One-state downhill versus conventional protein folding.
نویسندگان
چکیده
Classical protein folding invokes a cooperative transition between distinct thermodynamic states that are individually populated at equilibrium and separated by an energy barrier. It has been proposed, however, that the small protein, BBL, undergoes one-step downhill folding whereby it folds non-cooperatively to its native state without encountering an appreciable energy barrier. Only a single conformational ensemble is populated under given conditions, and so the denatured state ensemble progressively changes into the native structure. A wide dispersion of thermal denaturation midpoints that was observed for an extrinsically labelled fragment of BBL is proposed to be evidence for its one-state, downhill folding, a phenomenon that is also suggested to be functionally important for BBL and its homologues. We found, however, that thermal denaturation of unlabelled wild-type BBL was highly cooperative, with very similar transition midpoints for the melting of secondary and tertiary interactions, as well as for individual residues when monitored by NMR. Similar results were also observed for two other homologues, E3BD and POB. Further, the extrinsic fluorophores perturbed the unfolding energetics of labelled BBL, and complicated its equilibrium behaviour. One-step downhill folding may well occur for some proteins that do not have distinct folded states but not for BBL and its well-folded homologues.
منابع مشابه
Downhill versus two-state protein folding in a statistical mechanical model.
The authors address the problem of downhill protein folding in the framework of a simple statistical mechanical model, which allows an exact solution for the equilibrium and a semianalytical treatment of the kinetics. Focusing on protein 1BBL, a candidate for downhill folding behavior, and comparing it to the WW domain of protein PIN1, a two-state folder of comparable size, the authors show tha...
متن کاملRobustness of downhill folding: guidelines for the analysis of equilibrium folding experiments on small proteins.
Previously, we identified the protein BBL as a downhill folder. This conclusion was based on the statistical mechanical analysis of equilibrium experiments performed in two variants of BBL, one with a fluorescent label at the N-terminus, and another one labeled at both ends. A recent report has claimed that our results are an artifact of label-induced aggregation and that BBL with no fluorescen...
متن کاملA natural missing link between activated and downhill protein folding scenarios.
We propose protein PTB1 : 4W as a good candidate for engineering into a downhill folder. PTB1 : 4W has a probe-dependent thermal unfolding curve and sub-millisecond T-jump relaxation kinetics on more than one time scale. Its refolding rate in denaturant is a non-linear function of denaturant concentration (curved chevron plot). Yet at high denaturant concentration its unfolding is probe-indepen...
متن کاملDistinguishing between cooperative and unimodal downhill protein folding.
Conventional cooperative protein folding invokes discrete ensembles of native and denatured state structures in separate free-energy wells. Unimodal noncooperative ("downhill") folding, however, proposes an ensemble of states occupying a single free-energy well for proteins folding at >/=4 x 10(4) s(-1) at 298 K. It is difficult to falsify unimodal mechanisms for such fast folding proteins by s...
متن کاملMutational Analysis of the Downhill Folding Protein Gpw: towards Tuning Stability of a Molecular Rheostat Candidate
Title: MUTATIONAL ANALYSIS OF THE DOWNHILL FOLDING PROTEIN GPW: TOWARDS TUNING STABILITY OF A MOLECULAR RHEOSTAT CANDIDATE Adam Fung, Ph.D., 2008 Directed By: Associate Professor Victor Muñoz Department of Chemistry & Biochemistry A popular convention derived from early experimental evidence of single-domain proteins pointed towards a common mechanism of achieving their native threedimensional ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 344 2 شماره
صفحات -
تاریخ انتشار 2004